

Tackling the energy and climate crises: Striving for a greener Europe with energy security

Dr. Andreas Poullikkas

M.Phil, Ph.D, D. Tech, FIET Chairman, Cyprus Energy Regulatory Authority

apoullikkas@cera.org.cy

Contents

- Climate change towards sustainability
- EU energy strategy towards 2050
- RePowerEU plan phase out dependency on Russian fossil fuels
- Short to medium term challenges large scale integration of RES
- Long term scenarios from carbon economy to hydrogen economy
- Development of optimization algorithms advance simulation tools

Climate change towards sustainability

Night lights in 2000

Source: e2050, 2006.

Night lights in 2070

Source: e2050, 2006.

Global warming

2nd Conference of the University of Cyprus Model United Nations (UCYMUN 2023) University of Cyprus, Nicosia, 1 April 2023

ρυθμιστική αρχή

ενέργειας κύπρου cyprus energy

Global warming

Source: U.S. National Climatic Data Center, 2001.

Increase of Earth global temperature 1960-2060

Source: NASA, 2010.

2nd Conference of the University of Cyprus Model United Nations (UCYMUN 2023) University of Cyprus, Nicosia, 1 April 2023

EU energy strategy towards 2050

Future energy systems

Climate change

Third energy revolution

Future energy economics

Energy transition

- greenhouse gas reduction
 - EU: climate neutral by 2050
- sustainable production and consumption
- competition in electricity and natural gas markets
- security of supply

Sustainable energy

... provision of energy that meets the needs of the present without compromising the ability of future generations to meet their needs ...

Sustainable technologies

... technologies that promote sustainable energy include renewable energy sources as well as technologies designed to improve energy efficiency ...

Energy transition*

Need to:

- Reduce cost of security of supply
- Achieve market integration
- Increase socio-economic welfare benefits

* Poullikkas A., 2013, *Renewable Energy: Economics, Emerging Technologies and Global Practices*, ISBN: 978-1-62618-231-8

The EU Green Deal andFit-for-55EUROPEAN GREEN DEAL...to r

...to reach our targets in a:

- socially fair
- cost-efficient

• competitive

European Commission ρυθμιστική αρχή ενέργειας κύπρου cyprus energy regulatory authority

EU medium and long term targets

RePowerEU plan phase out dependency on Russian fossil fuels

EU energy import dependency on Russia (year 2021)

Natural gas

(pipe and LNG)

Coal

Oil

Brent price during crisis

RePowerEU plan*

- Phase out EU dependency on Russian gas, oil and coal imports
 - accelerating the reduction of overall reliance on fossil fuels
 - diversifying supplies through the use of LNG
 - further developing a hydrogen market for Europe
 - speeding up the development of renewables
 - completing and improving the interconnection of European gas and electricity networks and fully synchronising power grids throughout the EU SAVE ENERGY
 - s monitoring and optimising the functioning of the electricity INVESTMENT market National and European plans:
 - reforms and investments,
 - Energy savings aster permitting and innovation

* RePowerEU Plan, EU, 2022

H₂ accelerator*

* RePowerEU Plan, EU, 2022

Short to medium term challenges Large scale integration of RES

EU electricity market target model

Integration of RES*: LCOE vs Reliability

* Nicolaidis P., Poullikkas A., 2022, "Co-optimization of active power curtailment, load shedding and spinning reserve deficits through hybrid approach: Comparison of electrochemical storage technologies", *IET Renewable Power Generation*

2nd Conference of the University of Cyprus Model United Nations (UCYMUN 2023) University of Cyprus, Nicosia, 1 April 2023 ρυθμιστική αρχή

Intermittent energy source*

• Any source of energy that is not

continuously available

- May be quite predictable
- Cannot be dispatched to meet the demand of a power system
- For dispatching need storage
- * Poullikkas A., 2013, Renewable Energy: Economics, Emerging Technologies and Global Practices, ISBN: 978-1-62618-231-8

Daily load curve (the 'camel curve')*

* Poullikkas A., 2016, "From the 'camel curve' to the 'duck curve' on electric systems with increasing solar power", *Accountancy*

Effect of PV generation on load curve (the 'duck curve')*

* Poullikkas A., 2016, "From the 'camel curve' to the 'duck curve' on electric systems with increasing solar power", Accountancy

Storage and flexible technologies are the missing links

Hydrogen technologies

Long term scenarios from carbon economy to hydrogen economy

Energy system in 2010

EU energy system in 2010*

Future energy systems (optimistic scenario)

EU energy system in 2020-30*

Future energy systems (optimistic scenario)

EU energy system in 2040-50*

* Poullikkas A., 2009, Introduction to Power Generation Technologies, ISBN: 978-1-60876-472-3

Future power systems

The Super Smart Grid after 2050* (may allow for 100% RES)

* Poullikkas A., 2013, Sustainable Energy Development for Cyprus, ISBN: 978-9963-7355-3-2

Development of optimization algorithms advanced simulation tools for large scale integration of sustainable technologies including storage

* Poullikkas A., 2018, "An adaptive longterm electricity price risk modelling using Monte Carlo simulation", Journal of Power Technologies

Cost of reserves with RES production*

* Nicolaidis P., Chatzis S., Poullikkas A., 2018, "Renewable energy integration through optimal unit commitment and electricity storage in weak power networks", *International Journal of Sustainable Energy*

Integration of storage*

* Nicolaidis P., Chatzis S., Poullikkas A., 2018, "Renewable energy integration through optimal unit commitment and electricity storage in weak power networks", *International Journal of Sustainable Energy*

Additional Slides

The energy transition cost Towards 2050

Temperature anomalies *

* UN Environment, 2017.

EU reference scenario 2016

Source: PRIMES

Greenhouse gas emissions price

^{2&}lt;sup>nd</sup> Conference of the University of Cyprus Model United Nations (UCYMUN 2023) University of Cyprus, Nicosia, 1 April 2023

EU reference scenario 2016 ρυθμιστική αρχή ενέργειας κύπρου cyprus energy regulatory authority 2,500 100 90 ETS GHGs emissions (Mt CO₂-eq) 2,000 80 carbon price (€²⁰¹³/tCO₂ 70 1,500 60 50 1,000 40 30 ETS 500 20 10 0 0 2015 2020 2025 2030 2035 2040 2045 2050

Source: PRIMES, GAINS

^{2&}lt;sup>nd</sup> Conference of the University of Cyprus Model United Nations (UCYMUN 2023) University of Cyprus, Nicosia, 1 April 2023

Power generation cost (year 2010)*

* Poullikkas A., 2010, "The cost of integration of renewable energy sources", Accountancy

ρυθμιστική αρχή ενέργειας κύπρου cyprus energy regulatory authority

Power generation cost (year 2020-30)*

* Poullikkas A., 2010, "The cost of integration of renewable energy sources", Accountancy

regulatory authority

Power generation cost (year 2040-50)*

* Poullikkas A., 2010, "The cost of integration of renewable energy sources", Accountancy

ρυθμιστική αρχή ενέργειας κύπρου cyprus energy

Future energy cost* (for EU only)

* Poullikkas A., 2010, "The cost of integration of renewable energy sources", Accountancy

ρυθμιστική αρχή ενέργειας κύπρου cyprus energy regulatory authority