

The Regulator View: The Cyprus Future Energy Landscape

Dr. Andreas Poullikkas

M.Phil, Ph.D, D.Tech, FIET Chairman, Cyprus Energy Regulatory Authority <u>apoullikkas@cera.org.cy</u>

Contents

• EU energy strategy – towards 2050

- Cyprus current electricity and NG
 Systems systems characteristics
- Energy transition for island systems solutions to isolated systems
- Medium to long term challenges the role of interconnections and hydrogen

EU energy strategy towards 2050

EU medium and long term targets

Current energy system

EU energy system today*

* Poullikkas A., 2009, Introduction to Power Generation Technologies, ISBN: 978-1-60876-472-3

Future energy systems (optimistic scenario)

EU energy system in 2020-30*

Future energy systems (optimistic scenario)

EU energy system in 2040-50*

* Poullikkas A., 2009, Introduction to Power Generation Technologies, ISBN: 978-1-60876-472-3

Future power systems

The Super Smart Grid after 2050* (may allow for 100% RES)

* Poullikkas A., 2013, Sustainable Energy Development for Cyprus, ISBN: 978-9963-7355-3-2

Long term scenarios in Europe

Moving from Carbon economy to Hydrogen economy

Cyprus current electricity and NG systems Systems characteristics

Existing power generation system

- Steam turbine units (HFO)
 - Dhekelia power station 6x60MWe
 - Vasilikos power station 3x130MWe
- Combined cycles (Diesel)
 - Vasilikos power station 2x220MWe
- Gas turbine units (Diesel)
 - Moni power station 4x37,5MWe
 - Vasilikos power station 1x38MWe
- Internal combustion engines
 - Dhekelia power station 6x17.5MWe (HFO)

Existing power generation system (cont.)

- Renewables
 - **PVs: 293MWe**
 - Wind: 157MWe
 - Biomass: 13MWe

- Total installed capacity:
 - Conventional: 1483MWe
 - Renewables: 463MWe

regulatory authority

Distribution of RES-E

Existing natural gas system

- Under development !
- For power generation as a start...

Energy transition for island systems Solutions for isolated systems

Characteristics of isolated electricity systems*

- High fuel costs
 - ~ use of oil derivatives
 - ~ high CO₂ emissions (additional cost)

- Economies of scale cannot be adequately exploited
 - ~ generation units cannot exceed a certain size since the loss of a unit would mean the loss of a high percentage of the entire system
- Need to maintain high reserve capacity to ensure power system reliability

The smaller the electrical system size, the more the expenses will be

Energy transition for noninterconnected islands* Need to:

- Reduce cost of security of supply
- Achieve market integration
- Increase socio-economic welfare benefits

* Poullikkas A., 2013, *Renewable Energy: Economics, Emerging Technologies and Global Practices*, ISBN: 978-1-62618-231-8

The solution*

- Increase system flexibility
 - ~ use natural gas, storage and RES for power generation
 - ~ integrate RES into electricity market
 - promote e-mobility (V2G technology bidirectional flow of electricity between the electric car and the grid)

• Establish electricity interconnections

with EU internal electricity market (the island of Cyprus is the only non-interconnected Member State)

Production of hydrogen (energy carrier) ~ from RES and natural gas

CERA Energy Transition Regulatory Decisions

- **Regulatory Decision 01/2017 (ΚΔΠ 34/2017): A detailed schedule** for the implementation of EU electricity market target model
- Regulatory Decision 02/2018 (ΚΔΠ 259/2018): The mass installation of an Advanced Metering Infrastructure including smartmeters to all electricity consumers
- Regulatory Decision 02/2019 (ΚΔΠ 204/2019): The establishment of basic principles of a regulatory framework for the operation of electricity storage systems in the wholesale electricity market
- Regulatory Decision 03/2019 (ΚΔΠ 224/2019): The redesign of the power grid to become smart and bi-directional in order to allow integration of large quantities of renewable energy sources in combination with energy storage systems

Medium to long term challenges

The role of interconnections and hydrogen

Indigenous

energy

sources

Gas reserves in SE Mediterranean region*

* A. Belopolsky, et al., 2012, "New and emerging plays in the Eastern Mediterranean", *Petroleum Geoscience* Eastern Mediterranean Conference & Exhibition (EMC) Nicosia, Cyprus, 10-12 Nov 2021

Wind potential in SE Mediterranean region*

* The Global Wind Atlas (https://globalwindatlas)

Solar potential in SE Mediterranean region*

cyprus energy regulatory authority

40°E 20°E 30*E MD Ukraine France Switzenand Austria Budapest * Chisinău Russia Hungary SI-Ljubljana Romania · Zagreb Beograd Croatia Bucures Serbia SM MC Saraievo Italy Bulgaria Podgorica. KK Sofiya Portugal Madrid VA. Roma Skopi MK Tiranë. Albania Ankara Greece Tu r k e Gibraltar Al Jazair Tunis Malta Cyprus Rabat Leband Beyrouth• Irag Tunisia Tarābulus Tel Aviv-Yafo Algeria Mali Niger 0* 10°E 20°E 30*E 200 km 0 < 800 920 1040 1160 1280 1400 1520 1640 1760 1880 2000 2120 2240 2360 2480 2600 2720 2840 2960 3080 > kWh/m²

* Easac & Pihl, Erik. (2011). Concentrating Solar Power: Its potential contribution to a sustainable energy future Eastern Mediterranean Conference & Exhibition (EMC) Nicosia, Cyprus, 10-12 Nov 2021

Main indigenous energy sources in SE Mediterranean region

Power-to-Gas (P2G)*

 energy storage technology linking the electricity and gas infrastructure

* Poullikkas A., 2009, Introduction to Power Generation Technologies, ISBN: 978-1-60876-472-3

Target-setting for Cyprus' transition to hydrogen economy*

Target	Year		
	2030	2040	2050
Greenhouse gases	-30%	-75%	-100%
Renewable energy sources	30%	75%	100%
Electrical interconnections	50%	65%	80%

Cyprus could set a long-term goal of reducing greenhouse gas emissions by 100% by 2050 !

 * Poullikkas A., 2020, Long-term Sustainable Energy Strategy: Cyprus' Energy Transition to Hydrogen Economy, ISBN: 978-9925-7710-0-4
 Eastern Mediterranean Conference & Exhibition (EMC)
 Nicosia, Cyprus, 10-12 Nov 2021

Introduction of H2 in Cyprus's by 2030*

Energy transition by 2050

Cyprus' energy system:

- smart and digitised
- flexible
- decentralised
- electrically interconnected
- interconnected gas and/or hydrogen pipelines

Integration:

- hydrogen in all energy sectors
- renewable energy sources
- storage energy systems
- electric mobility

Transition of Cyprus from the current carbon economy to hydrogen economy by the year 2050

Development of regional energy strategy ?

- Horizon up to 2060
- Development of strategic plan for SE Med region:
 - ~ Electrical interconnections
 - Pipeline interconnections (or virtual pipelines)
 - ~ Integration of sustainable technologies and storage
 - ~ Use of hydrogen after 2030
 - ~ Hydrogen production
 - From natural gas
 - From renewables
- Energy exporters to EU

