

Energy strategies towards hydrogen economy

Dr. Andreas Poullikkas

M.Phil, Ph.D, D. Tech, FIET Chairman, Cyprus Energy Regulatory Authority <u>apoullikkas@cera.org.cy</u>

Contents

- EU energy strategy towards 2050
- Challenges in electricity markets large scale integration of RES and storage
- The role of Hydrogen in Energy Transition – long-term scenarios
- **Development of optimization algorithms** advanced simulation tools for large scale integration of RES and storage
- Long-term energy strategy for Cyprus regional cooperation towards hydrogen economy

EU energy strategy towards 2050

Future energy systems

Climate change

Third energy revolution

Future energy economics

EU energy objectives

- greenhouse gas reduction
- sustainable production and consumption
- competition in electricity and natural gas markets

```
security of supply
```


Sustainable energy

... provision of energy that meets the needs of the present without compromising the ability of future generations to meet their needs ...

Sustainable technologies

... technologies that promote sustainable energy include renewable energy sources as well as technologies designed to improve energy efficiency ...

EU medium and long term targets

- Extrapolating developments of the past does not forecast the future
- Gas, wind and sun providing Europe with clean heat, electricity and transport

Current energy system

* Poullikkas A., 2009, Introduction to Power Generation Technologies, ISBN: 978-1-60876-472-3

WEBINAR: Green hydrogen and its applications PUPC, Lima, Peru, September 13, 2021

ρυθμιστική αρχή ενέργειας κύπρου cyprus energy regulatory authority

Future energy systems (optimistic scenario)

EU energy system in 2020-30*

Future energy systems (optimistic scenario)

EU energy system in 2040-50*

Future power systems

Future power system

End goal – the smart future

The Super Smart Grid after 2050* (may allow for 100% RES)

* Poullikkas A., 2013, Sustainable Energy Development for Cyprus, ISBN: 978-9963-7355-3-2

Long term EU energy strategy (2050)

- A vision of carbon neutral EU
- Main ingredients of future sustainable energy systems:
 - Large scale integration of renewable energy sources
 - Distributed generation
 - Carbon capture and storage
 - Smartgrids
 - Electric vehicles
 - Storage devices
 - Hydrogen

Development of new sustainable technologies and infrastructure

EU reference scenario 2016

Source: PRIMES

Source: PRIMES, GAINS

Power generation cost (year 2010)*

* Poullikkas A., 2010, "The cost of integration of renewable energy sources", Accountancy

ρυθμιστική αρχή ενέργειας κύπρου cyprus energy regulatory authority

Power generation cost (year 2020-30)*

* Poullikkas A., 2010, "The cost of integration of renewable energy sources", Accountancy

regulatory authority

Power generation cost (year 2040-50)*

* Poullikkas A., 2010, "The cost of integration of renewable energy sources", Accountancy

ρυθμιστική αρχή ενέργειας κύπρου cyprus energy

Future energy cost* (for EU only)

* Poullikkas A., 2010, "The cost of integration of renewable energy sources", Accountancy

ρυθμιστική αρχή ενέργειας κύπρου cyprus energy regulatory authority

Challenges in electricity markets Large scale integration of RES and storage

What is a power system?

- Largest and most complex manmade system
- Electrical power is somewhat like the air we breath
 - We think about it only when it is missing
- PS should be operated with the goal of achieving:
 - Highest reliability standards
 - Lowest operation cost
 - Minimum environmental impacts

Electricity market complexities*

- Energy market
- **Power market** (flow of energy)
- Ancillary services market
 - Reserve (spinning, cold, primary, etc.)
 - Voltage regulation

- Frequency regulation, etc.

* Poullikkas A., 2016, Fundamentals of Energy Regulation, ISBN: 978-9963-7355-8-7

Electricity markets current issues

- Protection of the environment
 - Reduce primary emissions
 - Reduce greenhouse gas emissions
 - Develop alternative technologies
- Electricity markets open to competition
 - Increase in technologies efficiency
 - Reduce energy generation costs

Electricity market functions

• Generation (competition)

Transmission (monopoly)
Distribution (monopoly)

• Supply (competition)

EU electricity market target model

Integration of RES*: LCOE vs Reliability

* Nicolaidis P., Chatzis S., Poullikkas A., 2018, "Renewable energy integration through optimal unit commitment and electricity storage in weak power networks", International Journal of Sustainable Energy WEBINAR: Green hydrogen and its applications

PUPC, Lima, Peru, September 13, 2021

The fundamental requirement of electrical power supply

Get me what I want, when I want it !!!

Geeze. When the power's out there's nothing to play with around here."

PS operation and control

Time

PS operation and control

Key operational parameters

• Power balance: Generation must remain

balanced with demand

– Total generation (t) = Total demand (t) + Losses (t)

• System security

Equipment power flows must not exceed equipment ratings under normal or a single outage condition

Power system reliability*

• adequacy, PS ability to satisfy

customers needs both in power and electrical energy

• security, PS ability to remain in operation after sudden disturbances

* Poullikkas A., 2016, Fundamentals of Energy Regulation, ISBN: 978-9963-7355-8-7

Power system reliability* (the 6 must)

- Generation capacity **must** be greater than load
- Transmission must not be overloaded
- Voltages must be within limits
- Must be able to withstand loss of generator
- Must be able to withstand loss of transmission line
- Must not lose stability during short-circuit

* Poullikkas A., 2016, Fundamentals of Energy Regulation, ISBN: 978-9963-7355-8-7

Intermittent energy source*

• Any source of energy that is not

continuously available

- May be quite predictable
- Cannot be dispatched to meet the demand of a power system
- For dispatching need storage

* Poullikkas A., 2013, Renewable Energy: Economics, Emerging Technologies and Global Practices, ISBN: 978-1-62618-231-8
Daily load curve (the 'camel curve')*

* Poullikkas A., 2016, "From the 'camel curve' to the 'duck curve' on electric systems with increasing solar power", Accountancy

Effect of PV generation on load curve (the 'duck curve')*

* Poullikkas A., 2016, "From the 'camel curve' to the 'duck curve' on electric systems with increasing solar power", Accountancy

Use of natural gas as a transition or bridge fuel*

- switching from coal to gas
- using gas and storage to back up intermittent renewables
- the quickest, easiest and lowest cost decarbonization path

* Sterm J., 2019, Challenges to the future of LNG: decarbonisation, affordability and profitability, The Oxford Institute For Energy Studies

Gas is a pillar of renewable energy (power production in UK*)

* H.V. Rogers, 2011, The Impact of Import Dependence and Wind Generation on UK Gas Demand and Security of Supply to 2025, The Oxford Institute For Energy Studies

The role of Hydrogen in Energy Transition Long-term scenarios

Hydrogen : an efficient vector in a decarbonized energy mix

Long term scenarios in Europe

Moving from Carbon economy to Hydrogen economy

Potential role of hydrogen in the energy transition

Source: EU, 2019

Power-to-Gas (P2G)*

 energy storage technology linking the electricity and gas infrastructure

* Poullikkas A., 2009, Introduction to Power Generation Technologies, ISBN: 978-1-60876-472-3

Saudi Arabia \$5bn Helios H2 project 🧍

- Desert area = Belgium
- 4GW of Wind and PVs
- Production of 650t/day of H_2
- Reduce of H₂ production from 5US\$/kg to 1.5US\$/kg
- Long-term: Saudi Arabia to become H₂ exporter

Introduction of H2 in Cyprus's by 2030*

Towards hydrogen economy in 2050*

* Poullikkas A., 2013, Sustainable Energy Development for Cyprus, ISBN: 978-9963-7355-3-2

WEBINAR: Green hydrogen and its applications PUPC, Lima, Peru, September 13, 2021

ρυθμιστική αρχή ενέργειας κύπρου

Development of optimization algorithms Advanced simulation tools for large scale integration of RES and storage

The problem

The need

- Large scale integration of RES
 - e.g., EU RES targets by 2020, 2030

Main objective

• Assessment of the increase (or benefit) in the cost of electricity of a given power generation system at different RES-E penetration levels including storage

Model capabilities

- Use of unit commitment algorithms
- Energy mix and include storage
- Cost or benefit in the cost of electricity
- Price of FiT, FiP, etc
- Green tax (if necessary)

Objective function*

- Minimizing total cost
- satisfy constraints
 - Load demand
 - Unit capacity
 - Available capacity
 - Reserve margin
 - Spinning reserve
 - Fuel constraints
 - Environmental constraints
 - Power transmission constraints, etc

$$\min C = \min \sum_{i=1}^{n} x_i(c_i)$$

$$P_{D(t)} = \sum_{i} I_{(i,t)} P_{(i,t)}$$

$$P_{g,\min(i)} \le P_{(i,t)} \le P_{g,\max(i)}$$

$$R_{O(t)} \leq \sum_{i} r_{o(i,t)} I_{(i,t)} \qquad r_{o(i,t)} = \begin{cases} q_i \text{, if unit } i \text{ is OFF} \\ \\ r_{s(i,t)} \text{, if unit } i \text{ is ON} \end{cases}$$

$$R_{S(t)} \le \sum_{i} r_{s(i,t)} I_{(i,t)}$$
 $r_{s(i,t)} = \min \left[10MSR_i, P_{g,\max(i)} - P_{(i,t)} \right]$

$$\sum_{i} \sum_{t} C_{ei} \left[P_{(i,t)} I_{(i,t)} \right] + S_{e(i,t)} \leq E_{\max}$$

$$-P_{km}^{\max} \leq P_{km(t)} = f\left[\mathbf{B}_{(t)}, \varphi_{(t)}\right] \leq P_{km}^{\max}$$

 * Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources* WEBINAR: Green hydrogen and its applications
 PUPC, Lima, Peru, September 13, 2021

Typical shape of objective function*

 * Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources*
 WEBINAR: Green hydrogen and its applications

Decouple optimization technique*

Candidate power technology configuration

* Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources*.

Decouple optimization technique*

Candidate power technology configuration

* Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources*

Minimisation procedure*

Set of equations*

tions*

$$\left(\frac{A_{1} + A_{2} + A_{3} + A_{4}}{A_{5}}\right)_{1}$$

$$\left(\frac{A_{1} + A_{2} + A_{3} + A_{4}}{A_{5}}\right)_{2}$$

$$\left(\frac{A_{1} + A_{2} + A_{3} + A_{4}}{A_{5}}\right)_{2}$$

$$\left(\frac{A_{1} + A_{2} + A_{3} + A_{4}}{A_{5}}\right)_{3}$$

$$\left(\frac{A_{1} + A_{2} + A_{3} + A_{4}}{A_{5}}\right)_{4}$$

$$\left(\frac{A_{1} + A_{2} + A_{3} + A_{4}}{A$$

* Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources*. ρυθμιστική αρχή

- * Poullikkas A., Kourtis G., Hadjipaschalis I., 2011, "A hybrid model for the optimum integration of renewable technologies in power generation systems", *Energy Policy*
- ** Poullikkas A., 2018, "An adaptive longterm electricity price risk modelling using Monte Carlo simulation", Journal of Power Technologies (FPINAB: Green hydrogen and its ambientions)

Example of thermo-economic optimization*

bottoming cycles", International Journal of Sustainable Energy.

WEBINAR: Green hydrogen and its applications PUPC, Lima, Peru, September 13, 2021 ρυθμιστική αρχή

Cost of reserves with RES production*

* Nicolaidis P., Chatzis S., Poullikkas A., 2018, "Renewable energy integration through optimal unit commitment and electricity storage in weak power networks", *International Journal of Sustainable Energy*

Integration of storage*

* Nicolaidis P., Chatzis S., Poullikkas A., 2018, "Renewable energy integration through optimal unit commitment and electricity storage in weak power networks", *International Journal of Sustainable Energy*

Long-term energy strategy for Cyprus Regional cooperation towards hydrogen economy

Characteristics of isolated electricity systems*

- High fuel costs
 - ~ use of oil derivatives

- Economies of scale cannot be adequately exploited
 - ~ generation units cannot exceed a certain size since the loss of a unit would mean the loss of a high percentage of the entire system
- Need to maintain high reserve capacity to ensure power system reliability

The smaller the electrical system size, the more the expenses will be

* **Poullikkas A., 2015, Sustainable Energy Policy for Cyprus, ISBN: 978-9963-7355-6-3** WEBINAR: Green hydrogen and its applications PUPC, Lima, Peru, September 13, 2021 ρυθμιστική αρχή ενέργειας κύπρου cyprus energy

equilatory authority

Energy transition for noninterconnected islands*

Need to:

- Reduce cost of security of supply
- Achieve market integration
- Increase socio-economic welfare benefits

* Poullikkas A., 2013, *Renewable Energy: Economics, Emerging Technologies and Global Practices*, ISBN: 978-1-62618-231-8

The solution*

• Increase system flexibility

- ~ integrate RES into electricity market
- ~ use natural gas, storage and RES for power generation
- promote e-mobility (V2G technology bidirectional flow of electricity between the electric car and the grid)

• Establish electricity interconnections

with EU internal electricity market (the island of Cyprus is the only non-interconnected Member State)

Production of hydrogen (energy carrier) ~ from RES and natural gas

* **Poullikkas A., 2016,** *Fundamentals of Energy Regulation*, **ISBN: 978-9963-7355-8-7** WEBINAR: Green hydrogen and its applications PUPC, Lima, Peru, September 13, 2021

The sustainable satisfaction of Cyprus' future energy needs with safety and reliability

Indigenous energy sources

Gas reserves in SE Mediterranean region*

* A. Belopolsky, et al., 2012, "New and emerging plays in the Eastern Mediterranean", *Petroleum Geoscience* WEBINAR: Green hydrogen and its applications PUPC, Lima, Peru, September 13, 2021

Wind potential in SE Mediterranean region*

* The Global Wind Atlas (https://globalwindatlas)

Solar potential in SE Mediterranean region*

* Easac & Pihl, Erik. (2011). Concentrating Solar Power: Its potential contribution to a sustainable energy future WEBINAR: Green hydrogen and its applications PUPC, Lima, Peru, September 13, 2021 Main indigenous energy sources in SE Mediterranean region

Target-setting for Cyprus' transition to hydrogen economy*

Target	Year		
	2030	2040	2050
Greenhouse gases	-30%	-75%	-100%
Renewable energy sources	30%	75%	100%
Electrical interconnections	50%	65%	80%

Cyprus could set a long-term goal of reducing greenhouse gas emissions by 100% by 2050 !

 * Poullikkas A., 2020, Long-term Sustainable Energy Strategy: Cyprus' Energy Transition to Hydrogen Economy, ISBN: 978-9925-7710-0-4
 WEBINAR: Green hydrogen and its applications
 PUPC, Lima, Peru, September 13, 2021

Energy transition by 2050

Cyprus' energy system:

- smart and digitised
- flexible
- decentralised
- electrically interconnected
- interconnected gas and/or hydrogen pipelines

Integration:

- hydrogen in all energy sectors
- renewable energy sources
- storage energy systems
- electric mobility

Transition of Cyprus from the current carbon economy to hydrogen economy by the year 2050

Development of regional energy strategy ?

- Horizon up to 2060
- Development of strategic plan for SE Med region:
 - ~ Electrical interconnections
 - Pipeline interconnections (or virtual pipelines)
 - ~ Integration of sustainable technologies and storage
 - ~ Use of hydrogen after 2030
 - ~ Hydrogen production
 - From natural gas
 - From renewables
- Energy exporters to EU

