

# Plenary Talk Moving towards new energy era

#### **Dr. Andreas Poullikkas**

Ph.D, D. Tech, FIET Chairman, Cyprus Energy Regulatory Authority Chairman, Cyprus Energy Strategy Council <u>andreas.poullikkas@eecei.cut.ac.cy</u>

# Contents



• EU energy strategy - 2020, 2030, 2050

- Challenges in electricity markets
- Modeling for optimum large scale integration of RES
- Sustainable energy strategies for UAE



## EU energy strategy 2020, 2030, 2050

### **Future energy systems**



### Climate change



#### Third industrial revolution

### Future energy economics

# **EU energy objectives**



- greenhouse gas reduction
- sustainable production and consumption
- competition in electricity and natural gas markets

```
security of supply
```



#### EU medium and long term targets





#### EU reduction in greenhouse gas emissions





### **Current energy system**



#### EU energy system today\*



#### Future energy systems (optimistic scenario)



#### EU energy system in 2020-30\*



#### Future energy systems (optimistic scenario)



#### EU energy system in 2040-50\*



\* Poullikkas A., 2009, Introduction to Power Generation Technologies, ISBN: 978-1-60876-472-3

#### **Future power systems**





### End goal – the smart future





#### The Super Smart Grid after 2050\* (may allow for 100% RES)





\* Poullikkas A., 2013, Sustainable Energy Development for Cyprus, ISBN: 978-9963-7355-3-2

# Long term EU energy strategy (2050)

![](_page_13_Picture_1.jpeg)

- A vision of carbon free EU
- Main ingredients of future sustainable energy systems:
  - Large scale integration of renewable energy sources
  - Distributed generation
  - Carbon capture and storage
  - Smartgrids
  - Electric vehicles
  - Storage devices
  - Hydrogen

#### Need to develop advanced simulation tools, new sustainable technologies and infrastructure !!

![](_page_13_Figure_13.jpeg)

![](_page_14_Picture_0.jpeg)

# Challenges in electricity markets

**Electricity market complexities\*** 

![](_page_15_Picture_1.jpeg)

- Energy market
- Power market (flow of energy)
- Ancillary services market
  - Reserve (spinning, cold, primary, etc.)
  - Voltage regulation

#### - Frequency regulation, etc.

\* Poullikkas A., 2016, Fundamentals of Energy Regulation, ISBN: 978-9963-7355-8-7

#### **Electricity markets current issues**

![](_page_16_Picture_1.jpeg)

- Electricity markets open to competition
  - Increase in technologies efficiency
  - Reduce energy generation costs
- Protection of the environment
  - Reduce primary emissions
  - Reduce greenhouse gas emissions
  - Develop alternative technologies

### **Electricity market functions**

• Generation (competition)

Transmission (monopoly)
Distribution (monopoly)
Supply (competition)

![](_page_17_Picture_5.jpeg)

![](_page_17_Picture_6.jpeg)

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_8.jpeg)

![](_page_17_Picture_9.jpeg)

![](_page_18_Figure_0.jpeg)

#### EU electricity market target model

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

### **Electricity market operation**

![](_page_20_Picture_1.jpeg)

#### • Forward market

![](_page_20_Figure_3.jpeg)

#### Time (24 hours)

### **Electricity market operation**

![](_page_21_Picture_1.jpeg)

Forward market + Day ahead market

![](_page_21_Figure_3.jpeg)

Time (24 hours)

### **Electricity market operation**

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

Time (24 hours)

ρυθμιστική αρχή ενέργειας κύπρου

![](_page_23_Picture_0.jpeg)

# Modeling for optimum large scale integration of RES

### The problem

![](_page_24_Picture_1.jpeg)

#### The need

- Large scale integration of RES
  - e.g., EU RES targets by 2020, 2030

#### **Main objective**

• Assessment of the increase (or benefit) in the cost of electricity of a given power generation system at different RES-E penetration levels

### **Model capabilities**

![](_page_25_Picture_1.jpeg)

- Use of unit commitment algorithms
- Energy mix
- Cost or benefit in the cost of electricity
- Price of feed in tariffs
- Green tax

### **Important factors**

![](_page_26_Picture_1.jpeg)

- Fuel avoidance cost: by increasing RES-E penetration fuel consumption reduced
- CO<sub>2</sub> avoidance cost: by increasing RES-E penetration CO<sub>2</sub> emissions reduced
- Conventional power system operating cost: by increasing RES-E penetration the conventional power system operating cost is increased due to the increased requirements of conventional reserve capacity

### **Objective function\***

- Minimizing total cost
- satisfy constraints
  - Load demand
  - Available capacity
  - Reserve margin
  - Spinning reserve
  - Fuel constraints
  - Environmental constraints
  - Power transmission constraints, etc

![](_page_27_Figure_10.jpeg)

$$R_{O(t)} \leq \sum_{i} r_{o(i,t)} I_{(i,t)} \qquad r_{o(i,t)} = \begin{cases} q_i, \text{ if unit } t \text{ is OT } \\ r_{s(i,t)}, \text{ if unit } i \text{ is ON} \end{cases}$$

$$R_{S(t)} \le \sum_{i} r_{s(i,t)} I_{(i,t)} \qquad r_{s(i,t)} = \min \left[ 10MSR_{i}, P_{g,\max(i)} - P_{(i,t)} \right]$$
$$\sum \sum_{i} C_{ei} \left[ P_{(i,t)} I_{(i,t)} \right] + S_{e(i,t)} \le E_{\max}$$

i t

$$-P_{km}^{\max} \leq P_{km(t)} = f\left[\mathbf{B}_{(t)}, \varphi_{(t)}\right] \leq P_{km}^{\max}$$

\* Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources* 

![](_page_27_Picture_17.jpeg)

n  $\min C = \min \sum x_i(c_i)$ i=1

$$P_{D(t)} = \sum_{i} I_{(i,t)} P_{(i,t)}$$

$$P_{g,\min(i)} \le P_{(i,t)} \le P_{g,\max(i)}$$

#### **Typical shape of objective function\***

![](_page_28_Picture_1.jpeg)

![](_page_28_Figure_2.jpeg)

\* Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources*.

#### **Decouple optimization technique\***

![](_page_29_Figure_1.jpeg)

**Candidate power technology configuration** 

\* Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources*.

ρυθμιστική αρχή

### **Optimization model\***

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

\* Poullikkas A., Kourtis G., Hadjipaschalis I., 2011, "A hybrid model for the optimum integration of renewable technologies in power generation systems", *Energy Policy*.

#### **Decoupled objective function\***

![](_page_31_Picture_1.jpeg)

![](_page_31_Figure_2.jpeg)

\* Poullikkas A., IPP algorithm version 2.1, User manual, © 2000-2006.

![](_page_32_Figure_0.jpeg)

#### Fixed O&M cost function\*

#### Variable O&M cost function\*

![](_page_32_Figure_3.jpeg)

\* Poullikkas A., 2001, "A technology selection algorithm for independent power producers", *The Electricity Journal*.

#### **Environmental indicator functions\***

![](_page_33_Picture_1.jpeg)

SO<sub>2</sub>, NO<sub>X</sub> and dust environmental indicator function

![](_page_33_Figure_3.jpeg)

CO<sub>2</sub> environmental indicator function\*

![](_page_33_Figure_5.jpeg)

\* Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources*.

#### **CCS cost functions\***

![](_page_34_Picture_1.jpeg)

CO<sub>2</sub> capture cost function

#### CO<sub>2</sub> avoidance cost function

![](_page_34_Figure_4.jpeg)

- \* Poullikkas A., Zueter A.F., Dirar M.H., , 2015, "Prospective scenarios for the adoption of sustainable power generation technologies in United Arab Emirates", *International Journal of Sustainable Energy*
- \* Hadjipaschalis I., Christou C., Poullikkas A., 2007, "Assessment of future sustainable power technologies with carbon capture and storage", *International Journal of Emerging Electric Power Systems*.

#### **RES cost functions\*** Wind functions\* PV functions\*\*

![](_page_35_Picture_1.jpeg)

#### **CSP functions**\*\*\*

![](_page_35_Figure_3.jpeg)

\* Al-Tajer Y., Poullikkas A., 2015, "Parametric analysis for the implementation of wind power in United Arab Emirates", *Renewable and Sustainable Energy Reviews* 

\*\* Poullikkas A., 2013, "A comparative assessment of net metering and feed-in tariff schemes for residential PV systems", *Sustainable Energy Technologies and Assessments* 

\*\*\* Poullikkas A., Gadalla M., 2013, "Assessment of solar electricity production in United Arab Emirates", International Journal of Sustainable Energy

ρυθμιστική αρχή ενέρνειας κύπρου

regulatory authority

cyprus energy

### **Minimisation procedure\***

 $\min c = \min$ 

 $\left(\frac{A_1 + A_2 + A_3 + A_4}{4}\right)$ 

Set of equations\*

![](_page_36_Picture_2.jpeg)

Candidate

technology k +

existing system

\* Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources*.

![](_page_37_Picture_0.jpeg)

# **Sustainable energy strategies for UAE**

# **Main objective**

![](_page_38_Picture_1.jpeg)

### **Investigate the viability of**

### sustainable technologies

# for power generation in UAE

#### Sustainable power generation technologies considered

![](_page_39_Picture_1.jpeg)

- 250MWe natural gas combined cycle technology with
  - post-combustion CCS
  - pre-combustion CCS
- 50MWp PV systems
- **50MW wind parks**
- 50MWe parabolic trough CSP technology with
  - no thermal storage
  - 4.5h thermal storage
  - 9.5h thermal storage
  - 14.5h thermal storage
  - 24/7 operation

![](_page_39_Figure_13.jpeg)

![](_page_39_Figure_15.jpeg)

#### Annual solar potential\* (2106kWh/m<sup>2</sup>)

![](_page_40_Figure_1.jpeg)

Time (1 year in hourly intervals)

\* Poullikkas A., Gadalla M., 2013, "Assessment of solar electricity production in United Arab Emirates", International Journal of Sustainable Energy

5<sup>th</sup> International Conference on Energy, Sustainability and Climate Change (ESCC2018) Mykonos, Greece, June 4-6, 2018 cyprus energy regulatory authority

#### **Monthly optimal solar angle\***

![](_page_41_Picture_1.jpeg)

ity

![](_page_41_Figure_2.jpeg)

\* Poullikkas A., Gadalla M., 2013, "Assessment of solar electricity production in United Arab Emirates", International Journal of Sustainable Energy

# Hourly wind potential for the year of 2011\*

![](_page_42_Figure_1.jpeg)

\* AI-Tajer Y., Poullikkas A., 2015, "Parametric analysis for the implementation of wind power in United Arab Emirates", *Renewable and Sustainable Energy Reviews* 

5<sup>th</sup> International Conference on Energy, Sustainability and Climate Change (ESCC2018) Mykonos, Greece, June 4-6, 2018 **ρυθμιστική αρχή** ενέργειας κύπρου cyprus energy regulatory authority

#### Weibull curve distribution at different hub heights\*

![](_page_43_Picture_1.jpeg)

![](_page_43_Figure_2.jpeg)

\* AI-Tajer Y., Poullikkas A., 2015, "Parametric analysis for the implementation of wind power in United Arab Emirates", *Renewable and Sustainable Energy Reviews* 

# Total electricity generation for 50MW (20y)\*

![](_page_44_Picture_1.jpeg)

![](_page_44_Figure_2.jpeg)

\* Poullikkas A., Gadalla M., 2013, "Assessment of solar electricity production in United Arab Emirates", International Journal of Sustainable Energy

#### Total electricity production for 20 years for 50MW wind parks\*

![](_page_45_Picture_1.jpeg)

![](_page_45_Figure_2.jpeg)

\* AI-Tajer Y., Poullikkas A., 2015, "Parametric analysis for the implementation of wind power in United Arab Emirates", *Renewable and Sustainable Energy Reviews* 

#### **Annual CO2 avoided emissions\***

![](_page_46_Picture_1.jpeg)

![](_page_46_Figure_2.jpeg)

\* Poullikkas A., Gadalla M., 2013, "Assessment of solar electricity production in United Arab Emirates", International Journal of Sustainable Energy

#### **Cost of electricity parametric curves\*** ουθμιστική αρχή ενέρνειας κύπρου 40

![](_page_47_Figure_1.jpeg)

Poullikkas A., Zueter A.F., Dirar M.H., 2014, "Prospective scenarios for the adoption of sustainable power generation \* technologies in United Arab Emirates", International Journal of Sustainable Energy.

ity

#### Generation system annual electricity unit cost\* (in real prices)

![](_page_48_Picture_1.jpeg)

![](_page_48_Figure_2.jpeg)

\* Poullikkas A., Zueter A.F., Dirar M.H., 2014, "Prospective scenarios for the adoption of sustainable power generation technologies in United Arab Emirates", *International Journal of Sustainable Energy*.

# Typical net power output profile during summer\*

![](_page_49_Picture_1.jpeg)

![](_page_49_Figure_2.jpeg)

\* Poullikkas A., Gadalla M., 2013, "Assessment of solar electricity production in United Arab Emirates", International Journal of Sustainable Energy

#### Typical net power output profile during winter\*

![](_page_50_Picture_1.jpeg)

![](_page_50_Figure_2.jpeg)

\* Poullikkas A., Gadalla M., 2013, "Assessment of solar electricity production in United Arab Emirates", International Journal of Sustainable Energy

### Next steps

![](_page_51_Picture_1.jpeg)

First steps towards the development of UAE sustainable energy strategy

- Horizon up to 2060
- Integration of sustainable technologies\*
- Use of net-metering for domestic PV systems\*\*
- Use of auctioning schemes for new power capacity
- Use of hydrogen after 2030
- Hydrogen production\*\*\*
  - Nuclear power
  - Solar technologies
- \* Poullikkas A., Zueter A.F., Dirar M.H., , 2015, "Prospective scenarios for the adoption of sustainable power generation technologies in United Arab Emirates", *International Journal of Sustainable Energy*
- \*\* Poullikkas A., 2013, "A comparative assessment of net metering and feed-in tariff schemes for residential PV systems", Sustainable Energy Technologies and Assessments
- \*\*\*Babu B.S., Orhan M., Poullikkas A., 2013, "Mitigation of Environmental Impact via an Integrated Hydrogen production system based on solar and nuclear energy sources in U.A.E.", *Proceedings of the 4th International Conference on Renewable Energy and Sources and Energy Efficiency*