

Renewable and Sustainable Energy Futures

Dr. Andreas Poullikkas

Ph.D, D. Tech

apoullikkas@cera.org.cy

Contents

Long term strategies towards 2050

Medium term strategies towards 2030

Short term strategies towards 2020

Long term strategies Towards 2050

Climate change

Third industrial revolution

Future energy economics

EU energy objectives

greenhouse gas reduction

sustainable production and

consumption

security of supply

EU energy system today*

^{*} Poullikkas A., 2009, Introduction to Power Generation Technologies, ISBN: 978-1-60876-472-3

5th International Conference on Renewable Energy Sources and Energy Efficiency – New Challenges

Nicosia, 5-6 May 2016

EU energy system in 2020-30*

^{*} Poullikkas A., 2009, Introduction to Power Generation Technologies, ISBN: 978-1-60876-472-3

^{5&}lt;sup>th</sup> International Conference on Renewable Energy Sources and Energy Efficiency – New Challenges Nicosia, 5-6 May 2016

EU energy system in 2040-50*

^{*} Poullikkas A., 2009, Introduction to Power Generation Technologies, ISBN: 978-1-60876-472-3

Future PS

^{5&}lt;sup>th</sup> International Conference on Renewable Energy Sources and Energy Efficiency – New Challenges Nicosia, 5-6 May 2016

The Super Smart Grid after 2050 (may allow for 100% RES)

5th International Conference on Renewable Energy Sources and Energy Efficiency – New Challenges Nicosia, 5-6 May 2016

Main ingredients of future sustainable electric systems

- Large scale integration of renewable energy sources
- -Distributed generation
- -Carbon capture and storage
- -Smartgrids
- -Electric vehicles
- -Storage devices
- -Hydrogen

Towards hydrogen economy in 2050 🛴

5th International Conference on Renewable Energy Sources and Energy Efficiency – New Challenges Nicosia, 5-6 May 2016

Medium term strategies Towards 2030

Towards Energy Union

I want to reform and reorganise Europe's energy policy in a new European Energy Union. >>>

Jean-Claude Juncker

Energy Union

- a binding EU target of at least 40% less greenhouse gas emissions by 2030, compared to 1990
- a binding target of at least 27% of renewable energy use at EU level
- an energy efficiency increase of at least 27%
- the completion of the internal energy market by reaching an electricity interconnection target of 15%
- increase energy security (natural gas South Corridor)

Connecting electricity markets polylloring electricity markets

- Countries not meeting the 10% **interconnection** target

Importance for Cyprus

- Great importance for Cyprus
 - Special attention is made to the more remote and isolated energy systems such as Cyprus
 - EU financing for electric interconnections with the rest of the internal energy market
 - implement critical projects of common interest in the gas sector, such as:
 - the Southern Gas Corridor
 - the promotion of a new gas hub in Southern Europe

Action Plan

The fundamental requirement of electrical power supply:

Get me what I want, when I want it !!!

Intermittent energy source

- Any source of energy that is not continuously available
- May be quite predictable
- Cannot be dispatched to meet the demand of a power system
- For dispatching need storage

Wind generation

5th International Conference on Renewable Energy Sources and Energy Efficiency – New Challenges Nicosia, 5-6 May 2016

Wind generation

Daily load curve (the 'camel curve')

Effect of PV generation on load curve (the 'duck curve')

Steep ramping needs and overgeneration risk in California

Backfeed condition at 46kV level in Hawaii

Short term strategies Towards 2020

RES-E strategic plan 2010-20 main objective*

 ... to assess the optimum (minimum) increase in the cost of electricity of the Cyprus generation system by the integration of the necessary RES-E technologies for Cyprus to achieve its national RES energy target ...

^{*} Poullikkas A., Kourtis G., Hadjipaschalis I., 2011, "A hybrid model for the optimum integration of renewable technologies in power generation systems", *Energy Policy*

RES technologies considered

Wind

PVs

CSP with 6 hours thermal storage

Biomass

Hourly annual wind potential

Time (1 year in hourly intervals)

1/2 hour annual solar potential

Time (1 year in 30 minutes intervals)

Model capabilities

Use of unit commitment algorithms

Energy mix

Cost or benefit in the cost of electricity

Price of feed in tariffs

Green tax

Important factors considered

- Fuel avoidance cost: by increasing RES-E penetration fuel consumption reduced
- CO₂ avoidance cost: by increasing RES-E penetration CO₂ emissions reduced
- Conventional power system operating cost: by increasing RES-E penetration the conventional power system operating cost is increased due to the increased requirements of conventional reserve capacity

Optimization model*

* Poullikkas A., Kourtis G., Hadjipaschalis I., 2011, "A hybrid model for the optimum integration of renewable technologies in power generation systems", *Energy Policy* and Poullikkas A., 2009, "A decouple optimization method for power technology selection in competitive markets", *Energy Sources*.

5th International Conference on Renewable Energy Sources and Energy Efficiency – New Challenges Nicosia, 5-6 May 2016

Example of PV generation during Summer time*

* Poullikkas A., 2009, "Parametric cost-benefit analysis for the installation of photovoltaic parks in the island of Cyprus", *Energy Policy*

Example of PV generation during Winter time*

* Poullikkas A., 2009, "Parametric cost-benefit analysis for the installation of photovoltaic parks in the island of Cyprus", *Energy Policy*

5th International Conference on Renewable Energy Sources and Energy Efficiency – New Challenges Nicosia, 5-6 May 2016

Example of 75MW CSP generation during peak load (no storage, normal conditions)

Example of 75MW CSP generation during peak load (no storage, with clouds)

Example of 75MW CSP generation during peak load (6h storage, normal conditions)

Example of 75MW CSP generation during peak load (6h storage, with clouds)

Power generation system energy mix with BAU

5th International Conference on Renewable Energy Sources and Energy Efficiency – New Challenges Nicosia, 5-6 May 2016

Power generation system energy mix with 10% RES-E penetration

Power generation system energy mix with 15% RES-E penetration

Power generation system energy mix with 20% RES-E penetration

Power generation system energy mix with 25% RES-E penetration

RES-E strategic plan 2010-20

- RES-E penetration at 16% by 2020
- Important measures
 - Shifting from FiT mechanism, which is independent of electricity market prices, to a more market based mechanism
 - Introduction of the net-metering scheme
 - Use of competitive auctioning processes for RES-E capacity